$\begin{array}{lllllllllllllllllllllll}\mathbf{O} & \mathbf{K} & \mathbf{L} & \mathbf{A} & \mathbf{H} & \mathbf{O} & \mathbf{M} & \mathbf{A} & \mathbf{S} & \mathbf{T} & \mathbf{A} & \mathbf{T} & \mathbf{E} & \mathbf{U} & \mathbf{N} & \mathbf{I} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{S} & \mathbf{I} & \mathbf{T}\end{array}$

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I
 Spring 2001
 Midterm Exam \#2

" do Problems 3 and 4, then choose any 2 from Problems 1, 2, and 5. specify which two were chosen here: \& "

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Obtain an analogous mechanical system (using force-voltage analogy) for the electrical system shown below.

Problem 2:

The autocorrelation sequence of $x(k)$ is defined as

$$
\phi_{x x}(k)=\sum_{n=-\infty}^{\infty} x(n) x(k+n) .
$$

Determine the \mathbf{Z}-transform of $\phi_{x x}(k)$ in terms of the Z-transfrom of $x(k)$.

Problem 3:

Find $X(z)$ for
a) $x(k)=k^{4} u(k)$
b) $x(k)=\left(\frac{1}{5}\right)^{-k} u(-k-2)$

Problem 4:

Find $x(k)$ for
a) $\quad X(z)=\frac{z^{-1}}{\left(e-z^{-1}\right)^{3}}$
b) $\quad X(z)=\ln \left(\frac{z-1}{2 z^{2}+1}\right)$

Problem 5:

A linear, time-invariant discrete-time system is described by the transfer function

$$
H(z)=\frac{2 z+1}{z^{2}+z-2} .
$$

Find an input $x(k)$ with $x(k)=0, k<0$ that gives the output response $y(k)=2 u(k)-u(k-2)$ with initial condition $y[-2]=2, y[-1]=1$.

